The ADMA/DDAH pathway regulates VEGF-mediated angiogenesis.

نویسندگان

  • Lorna R Fiedler
  • Tiziana Bachetti
  • James Leiper
  • Ian Zachary
  • Lihua Chen
  • Thomas Renné
  • Beata Wojciak-Stothard
چکیده

OBJECTIVE Asymmetrical dimethylarginine (ADMA) is a nitric oxide synthase (NOS) inhibitor and cardiovascular risk factor associated with angiogenic disorders. Enzymes metabolising ADMA, dimethylarginine dimethylaminohydrolases (DDAH) promote angiogenesis, but the mechanisms are not clear. We hypothesized that ADMA/DDAH modifies endothelial responses to vascular endothelial growth factor (VEGF) by affecting activity of Rho GTPases, regulators of actin polymerization, and focal adhesion dynamics. METHODS AND RESULTS The effects of ADMA on VEGF-induced endothelial cell motility, focal adhesion turnover, and angiogenesis were studied in human umbilical vein endothelial cells (HUVECs) and DDAH I heterozygous knockout mice. ADMA inhibited VEGF-induced chemotaxis in vitro and angiogenesis in vitro and in vivo in an NO-dependent way. ADMA effects were prevented by overexpression of DDAH but were not associated with decreased proliferation, increased apoptosis, or changes in VEGFR-2 activity or expression. ADMA inhibited endothelial cell polarization, protrusion formation, and decreased focal adhesion dynamics, resulting from Rac1 inhibition after decrease in phosphorylation of vasodilator stimulated phosphoprotein (VASP). Constitutively active Rac1, and to a lesser extent dominant negative RhoA, abrogated ADMA effects in vitro and in vivo. CONCLUSIONS The ADMA/DDAH pathway regulates VEGF-induced angiogenesis in an NO- and Rac1-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

The DDAH/ADMA pathway in the control of endothelial cell migration and angiogenesis.

ADMA (asymmetric dimethylarginine) is a cardiovascular risk factor and an endogenous inhibitor of NOS (nitric oxide synthase). ADMA is metabolized by DDAHs (dimethylarginine dimethylaminohydrolases). ADMA levels are increased in cardiovascular disorders associated with abnormal angiogenesis but the mechanisms are poorly understood. Recent studies show that altering ADMA metabolism in vivo and i...

متن کامل

Dimethylarginine dimethylaminohydrolase activity modulates ADMA levels, VEGF expression, and cell phenotype.

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of circulating ADMA correlate with various cardiovascular pathologies less is known about the cellular effects of altered DDAH activity. We modified DDAH activity in cells and measured the changes in ADMA levels, morphologic...

متن کامل

Overexpression of dimethylarginine dimethylaminohydrolase reduces tissue asymmetric dimethylarginine levels and enhances angiogenesis.

BACKGROUND This study was designed to determine whether overexpression of the enzyme dimethylarginine dimethylaminohydrolase (DDAH) could enhance angiogenesis by reducing levels of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA). METHODS AND RESULTS In DDAH1 transgenic (TG) and wild-type mice (each n=42), the role of DDAH overexpression on angiogenesis ...

متن کامل

The ADMA/DDAH pathway is a critical regulator of endothelial cell motility.

Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide production associated with abnormal blood vessel growth and repair, however, the mechanism of action of ADMA is not well understood. We studied the role of exogenous and endogenous ADMA in the regulation of cell motility and actin cytoskeleton in porcine pulmonary endothelial cells (PAECs) and pulmonary microvascular endothelial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 29 12  شماره 

صفحات  -

تاریخ انتشار 2009